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Special Solutions of the
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A Fokker-Planck equation can be derived from a transition-type transport
equation if the transition rates are nearly local in momentum space com-
pared with the inhomogeneity length of the distribution. It is a second-order
differential equation, whose coefficients depend on the band structure
E(k), the viscosity tensor 1j(k), and the temperature 7. Classical solutions of
the Fokker-Planck equation deal with the parabolic band structure of free
Brownian particles in a field of force. Mobility and diffusivity are then
independent of the applied field. Here the explicit solution for the stationary
state and the time-integrated conditional probability will be given in one
dimension. This suffices to determine mobility and diffusivity. Assuming
7 = 1, these quantities become independent of the field and the band
structure, if the latter is nonperiodic, though the distribution still depends
on it. This property even holds in three dimensions for k-independent
viscosity tensors. Field-dependent mobility and diffusivity are obtained for
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a k-dependent viscosity or n = 1 and periodic band structures. The latter
is demonstrated for the case £ = —cos k, which is also related to the noise
problem in Josephson junctions.

KEY WORDS: Nonequilibrium transport; Fokker—Planck equation;
transport coefficients; noise-temperature conjecture; noisy Josephson
junction.

1. INTRODUCTION

The Fokker-Planck equation has been studied extensively for classical
systems in connection with Brownian motion and as a result of a linear
Langevin equation (see Ref. 1). The fluctuation theory for nonlinear systems
has been developed on the same basis by MacDonald® and Polder,® who
introduced a velocity-dependent viscosity or friction coefficient in the Lange-
vin equation. Inconsistencies coming out from a Langevin treatment of the
nonlinear rate equations have been elucidated by van Kampen,”® who claims
that only a master-equation approach avoids the difficulties in deriving the
noise spectrum of the nonlinear system. This is plausible since only the master
equation defines all rate equations uniquely, but the velocity rate equation or
its deterministic Langevin form with random force does not, in general,
imply the velocity correlation function or the second velocity moment, quite
apart from higher correlation functions and moments.

In the presence of a field of force the Fokker-Planck equation has been
discussed by Kramers and others (see Ref. 5). The problem is quite similar to
the transport equation for free electrons in an electric field, but instead of a
discontinuous transition rate collision operator, a Fokker—Planck differential
operator has to be used. We know that under certain conditions this can be
justified (see Ref. 6). The discontinuous transitions can be approximated by a
continuous stochastic process if the transition rates are sufficiently local
compared to the inhomogeneity length of the distribution.

We should like to apply this concept to some typical collision operators.
Consider the collisions of electrons by a deformation potential and acoustic
phonons. A perturbation expansion with respect to the sound velocity allows
reduction of the collision operator into a second-order differential term (con-
tinuous process) in energy (see Ref. 7), whereas the momentum change is still
of transition type. If the transition rate is small for large momentum change,
as, for example, in crystals with polar optical scattering (see Ref. 8), then a
Fokker-Planck approximation in momentum can also be assumed. These
approximations are justified only if the transition-rate multiplying factor is
slowly varying in the range where the transition rate has a rather sharp
maximum (method of steepest descent).
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In this paper we give some general results for the transport problem as
given by continuous stochastic processes. In Section 2 the transport equation
with a Fokker-Planck collision term is derived from the usual transition-rate
collision term. In Section 3 the steady-state solution and the mobility, and in
Section 4 the diffusivity, are determined, respectively, for an arbitrary non-
periodic band structure. The special case of a linear system is treated in
Section 5. The example for a periodic band structure is given in Section 6,
while Section 7 contains final remarks.

2. THE FOKKER-PLANCK EQUATION FOR CHARGED
PARTICLES

The usual approach to transport theory of charged particles (see Ref. 9)
includes the quantum mechanical properties of the band structure E(Kk)
resulting from a periodic lattice, and the transition rates Wy, for a transition
of particles in the state k’ to state k. Since the pseudomomentum K increases
in the presence of a field F (dk/dr = F), the change by flow in k, x space will
be compensated by collisions according to the transport equation

0 b7} 7} ,
8]} + F af; + vk afk = fdsk(Wkk'fk' = Wi /i) (1)

where v, = 9E,/0k is the group velocity of the particles, iy, = C exp(— E/T)
is the normalized Maxwell-Boltzmann distribution in equilibrium, and the
transition rates fulfill the detailed balance Wyy.hy = Wiy, which ensures
the equilibrium solution fi, = A, for F = 0 (A = e = kz = m = 1). As men-
tioned before, there are collision processes where transitions with small
momentum changes k — k” are predominant, i.e., the transition rates con-
tribute only in a small range |k — k| < Ak. If the distribution function is
nearly constant over this range, the collision operator can be expanded in a
power series of differential operators which has to be truncated at the
second order for an equation with solutions of probability character (see Ref.
10). In order to have a Maxwell-Boltzmann distribution 4 in equilibrium,
the complete equation for continuous collision processes becomes

ZJ“F@{(J" "?1: ai[ (”“f+ Ta{(]) )

where 1y is a momentum-dependent symmetric tensor, which is a friction
coefficient or relaxation frequency, and gives the relaxation rates to the
equilibrium distribution for different k values. According to Moyal,®®
2n44(K) is the second moment of Wy, and is even in the momentum, because
the transition rate is invariant against (k, k') — (—k, —k").

For parabolic band structure and constant friction coefficient this equa-
tion has been discussed in the zero-field case and for a constant field. The
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result is a displaced Maxwellian distribution with displacement u, = 7, =
F,/n and a velocity-velocity correlation function Av(2)Av(0) = Te~™3,,.
Therefore mobility .,z and diffusivity D,

Hag = dl—’oc/ dr, B (3)

b= " RoiA5,0) @

are independent of the field, in agreement with linear rate equations.

In the next section mobility and diffusivity will be determined formally
for the general transport equation (2) in the case of nonperiodic band
structures E£(Kk) in one dimension.

3. MOBILITY AND DIFFUSIVITY OF THE GENERAL
FOKKER-PLANCK EQUATION IN ONE DIMENSION

The one-dimensional Fokker—Planck equation for a homogeneous
system (6/6x = 0) becomes

and it has a nonegative, normalizable solution, since 9, > 0. In the stationary
state (8/0¢t = 0) this equation reduces to

F¢* = nlvd* + T(04°/0k)] (6)

where the integration constant vanishes, because ¢° has to be normalizable in
—w < k < oo, and therefore ¢* — 0 for |k| — co. Direct integration yields

- e

¢ = Cexp[—(E, — FBy)/T], B, =
o Mk

Q]
and C follows from _[ dk ¢, = 1. The stationary solution exists, if 0 <
7, < 00, and is unique. It is stable,? since all initial distributions tend to ¢° for
t — oo, i.e., deviations from ¢° decay to zero. According to Eq. (3), the mobil-
ity of the carriers is

w= duldF, u=7% = f dk () (k) ®)

The explicit solution of the transient problem can only be given for
simple cases, since a Laplace transform would give rise to an ordinary
second-order differential equation. But in order to find D it is sufficient to

2 Only in the range where limy., » 702 = oo does the existence of the stationary solution
also imply its asymptotic stability (see appendix).
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have the time integral of the conditional probability. Subtracting the station-
ary solution from (5) and integrating finally gives

$*(k) — 3(k — ko) + F’g‘]é = 53]_6- [n(vA + T—g%)] ©)
where
Ak, ko) = J; dt [p(kt ko) — ¢5(k)] (10)

By straightforward integration of (9), one gets

A, ko) = {exp[—(E(k) — FB(k))/T]}{B(ko)
+ f_ ' [ f_’ dk" (k") — Sk — ko))]

x expl(E(K) — FB(k'))/T]} an

where B(k,) follows from the condition fdk A(k, ko) = 0, which can be
verified by Eq. (10). Therefore A(k, ko) is explicitly known for all band
structures and friction coefficients.

According to Eq. (4), the diffusivity can be expressed by

D= f dk f dicy v()o (ko) ALk, ko) (o) (12)

and therefore the solution of (9) is sufficient in order to determine D.
The mobility u(F) and the diffusivity D(F) are therefore explicitly
determined from the solutions of a Fokker—Planck equation in one dimension.

4. MOBILITY AND DIFFUSIVITY FOR THE CASE OF
CONSTANT FRICTION IN THREE DIMENSIONS

Solution of the general Fokker-Planck equation in three dimensions is
usually not possible in closed form. Even in the special case of constant
friction coefficient the explicit solution cannot be found for arbitrary band
structures. But it will now be proved that in this special case, mobility and
diffusivity can very easily be derived from the lowest rate equations (moment
equations) of the three-dimensional version of Egs. (5) and (9).

The equation for the conservation of momentum is

(okj/ot) — F = —n-v (13)
which in the stationary state provides drift velocity and mobility

u=¥v=n"1F, u=n""' (14)
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a result which is well known for free electrons or parabolic bands.
The equivalent momentum equation from Eq. (9) is

K-k, = —n- jd3k vA (15)

since the field term vanishes by f d3kA = 0. The diffusivity is then, by Eqgs.
(12) and (15),

D = f &k [0 (k — B)Ivg(k)

= [@sen1 kv - P00 (16)
which by use of Egs. (6) and (14) becomes
D= fd3k n-t-k(—T 8¢°/2k) = n~1T (17)

This again is the well-known result for free electrons (see Ref. 5).

It is remarkable that mobility and diffusivity do not depend on the
electric field nor on the band structure. This is a degeneracy in the sense that,
though the distribution depends on F and E(k), the lowest moment and
correlation function coincide, respectively.

In all our considerations it was tacitly assumed that the band structure
extends over the whole k space with lim,,. . E = oo, i.e., that E(k) is non-
periodic. Therefore the integration constant in Eq. (6) is zero if |k| — o0 is
inserted.

It will finally be shown that for periodic band structures the degeneracy
mentioned is removed.

5. PERIODIC BAND STRUCTURE AND CONSTANT FRICTION

Explicit solutions of the Fokker-Planck equation and constant relaxa-
tion frequency (y = 1 is no restriction) can also be derived for periodic band
structures in one dimension, i.e., Ey,, = E,, where p is the period in the
reciprocal lattice. Compared to Eq. (7), the stationary solution is

¢ = Ao, j "), o = expl—(B, — FR)/TI (18)

since the integration constant, which vanishes in Eq. (6), is 4 # 0 here. The
periodicity of ¢° is guaranteed if @ = co. Summation over all periods gives

A kP i
¢ = 1 = ¢ %L P (19)
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which can be decomposed into
1 P dk’ * di’
== -— + e“’F’Tf -——] 20
¢ N%[ k P o Pr (20)

where N follows from normalization f(m dk ¢ = 1.

In the limit of T = 0 the first term is dominant and has a sharp maximum
for F < v,y at k = ko(F), the smallest root of v(k) = F, if E, has its abso-
lute minimum in k& = 0; for F > v,,,, the distribution can be found from the
Fokker-Planck equation for T = 0,°

S[k - kO(F)]: |Fl < Umax

T=0: ¢k = c . Q1)
T= (o/F) [F| > Dmax

In the limit T'— co (¢, — 1) the particles are equally distributed and
T=c: $k)=1/p (22

The drift velocity obtained by simple integration of the Fokker—Planck
equation gives

u(F,T) = F — Tp(l — e~PFIT)

P P ’ D k .
x [f dk¢kf é’i-Jre—Wf dk¢kf @ﬁ] @)
0 ’ 0

r Pr o Pr
and
I, IF| < Umax

T=0: wFO0) =1{p_ ___IZF_I__ IF| > vpay (24)

dk ——

f I — (v/F)
T=oc: u(F,0)=0 (25)
F»w:ﬂﬂﬂ=W@ﬁ&ﬁ+ﬂWﬂ (26)

This determines the global behavior of the drift curves; details are given for
E = —cosk in Fig. 1 for all temperatures. All curves have critical fields
where the differential conductivity vanishes.

® The Fokker—Planck equation for |F| < vpay gives ¢° = 2n Cadlk — ku(F)], where n
numbers the different solutions of v, = F. What weights C, have to be attributed to the
solutions is not a priori evident. For F = 0 only the absolute energy minimum should
contribute.
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Fig. 1. Drift velocity u for the periodic band structure E = —cos k as a function of the
applied field F with temperature T as a parameter.

There is a one-to-one correspondence between the drift in a periodic

band of type £ = —cos k and the noise problem of a Josephson oscillator
with zero capacitance (see Ref. 11). The average voltage v equals
U(xa 7) = u(Fa T) - F (27)

where x is the input current, to be identified here with F, and 1/y is the noise
parameter, to be identified here with 7/2. The average voltage input-current
characteristic of a noisy Josephson junction is therefore essentially the
average current input-voltage characteristic of a Fokker-Planck transport
problem. An interference term in the Josephson noise problem corresponds
to a k-dependent field and friction.*

The diffusion constant can be found in analogy to Section 3 for the
nonperiodic case. Integration of (9) with n = 1 yields

oA

T L on =~ + | L a0 — Sk — k)] (28)
—-p/2

% The field term F, 8f/ok in the transport equation has then to be written as (8/2k) x
(Fyxf) in order to have local particle conservation.
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where 8,(k) = >2. _. 8(k — np), and B(k,) is determined by the normaliza-
tion f . dkA = 0. Since ¢°(k) and 8,(k — k,) are periodic in k, then A(k, ko)
also becomes a periodic function in k and k:

k+p ’
Mok = B [

—g-oFir Pk A - T(1 — e~ ?FIT)
k+p dk, ke ” s "
« f ' f dk” [ (k") = 8,(k" — ko)] (29)
k Pr J-pr2

1 k+n dkr K’
B =7y [ ko[ |

@) k [

dk” [$°(k") — 3,(k" — ko) (30)

-2

Integrating (28) over the period p gives

dk vA = ko — k* — pTB(k,) 3D
®
and the diffusivity D follows by means of (12).

This result has been applied again to E = —cos k. The diffusion has
been calculated numerically and Fig. 2 represents D and the noise temperature
® = D/u, which, according to Einstein’s relation, has to coincide with T for
F = 0. For F— oo the diffusion constant decreases as

F—>cw: D~ TJ2F? (32)

which, because of u ~ 1/2F [see Eq. (26)], gives formally @ = —T. It has to
be mentioned that cases with negative mobility (i.e., ® < 0) are physically
unstable with respect to small density fluctuations; therefore the negative @
branch has been omitted in Fig. 2.

6. FINAL REMARKS

The Fokker-Planck equation has been introduced as a limit case of a
transition-rate transport equation. This can be done if the transition rates are
rather local compared to the inhomogeneity length of the distribution. This
general Fokker-Planck equation has been studied in the special case of free
particles or parabolic band structure in many classical papers.

Here we were especially interested in solutions for nonparabolic bands.
Explicit solutions can be found in one dimension for the stationary distribu-
tion and for A(k, ko) a time-integrated form of the conditional probability,
which suffices for determining the diffusion constant.

In three dimensions the problem is analogous to the solution of the
drifted diffusion equation, where drift and diffusion constant are space
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Fig. 2. Diffusion constant D and noise temperature ® = D/(du/dF) as a function of the
field F for temperature T =1 (ks = 1). At the critical field F(T = 1) = 1.185 the
mobility vanishes.

dependent. Mobility and diffusivity cannot, in general, be found except in the
case of a constant viscosity tensor Ny = const.

The result for mobility and diffusivity then coincides with the same result
of the well-known case of parabolic bands E, = k?/2, whereas the distribu-
tion and the conditional probability are quite different. This indicates a
degeneracy, in the sense that averages (eigenvalues) are independent of certain
properties (symmetries or parameters) though the distributions (wave func-
tions) depend on it. Here mobility and diffusivity and therefore also the noise
temperature ® are independent of the field and the band structure, if the latter
is nonperiodic.®

This degeneracy also has some connection to the noise conjecture (see
Ref. 12), which claims that the noise temperature @ is a minimum in equi-

% This does not hold for frequencies w # 0, except in the classical case of parabolic
bands, where ®(w, F, T) = T.
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librium F = 0, where it coincides with 7, the lattice temperature, whereas for
F > 0 it should always be larger. For a parabolic band in the constant-r
approximation theresultis @ = T + F?7%and O, = T, the latter degenerate
with respect to the field.

A counterexample to the unqualified conjecture ®, ®, > T was found
by varying the band structure £ = [k|¢, since ®, = T + (positive constant)
X (€ — 2)F? + - provides ©, < T for small fields and ¢ < 2. This example
led to a more precise formulation of the conjecture in three dimensions, the
qualified conjecture, which so far has not been falsified.

Now the field degeneracy of the Fokker-Planck noise temperature
© = T for parabolic bands could, hopefully, lead also to a genuine counter-
example for the one-dimensional ©® > T conjecture if the energy is varied.
Assuming E, = }k® + Xe, (A is a small expansion parameter), the noise tem-
perature would be an expansion © = T + AO(F,T) + X0OyF, T) + ...,
where the coefficients are functionals of ¢,. A counterexample would be
relatively easily constructible if ®; s 0. But explicit perturbation theory not
only gives ®, = 0 but also ®, = 0; =... = 0, for which a much simpler
proof was found later, which has been presented in Section 4.

APPENDIX

According to Eq. (7) the stationary solution ¢* exists for all fields if (1)
7 > 0 in —oo < k < oo (eventually lim, ., 7, = 0), and if (2) lim,_, E./
By = 0. Iflimy, o, Ey/B, = Fpis finite, the stationary solution exists only for
|F| < Fg, a runaway field.

The solution of the time-dependent equation (5) can be reduced by
¢ oc e~ to the eigenvalue problem

o ( o\ @ B
which by substituting ¢ = ¢/4° is equivalent to the (self-adjoint) Sturm-—
Liouville equation

(Tng*'y + A% = 0 (A.2)

All eigenvalues A must be nonnegative, sincefdk Y{(A.2)} gives immediately

A=T f dk 7o / f dk 642 > 0 (A.3)

where the value A = 0 belongs to the stationary solution ¢ = dorg =1 1If
the lowest eigenvalue were well separated from the next, only the A = 0 term
would survive for # — o if the solution ¢(k, t) were expanded with respect to
eigenfunctions.
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A Schrédinger representation of the eigenvalue problems gives more
insight into the nature of the eigenvalue spectrum. The substitutions

§ = RBOPRD, 0 = | e A4
transform (A.1) into
T d2p)dx® + (A — V(x))p = 0 (A.5)
with the potential

Vo) =5 [@ _ (dn/dk)2] L w-FP 1d a6

dk? 7 4Ty 2dk ()

If the x range is infinite and V(x) — + oo for |x| — co or if the range is finite
—x; < x < x;, the eigenvalues {A,} are all discrete and therefore A, = 0
(simple, since the stationary solution is unique) and A, > A; > 0 are well
separated.

Assuming asymptotic forms E ~ |k|¢ with ¢ > 0 and n ~ [k]?, the x
range becomes finite if « > 2, e > 0. For infinite x range, « < 2, and n® ~
k**+2-2 js the dominant term for x — oo in the potential. The stationary
solution exists if E./B, ~ k**“"'—o0, i€, for ¢ >0 and ¢+ « > |,
whereas asymptotic stability follows for € > 0 and « 4+ %o > 1, ie., if
lim,,, 702 = co. In the range € >0, e+ o> 1, €+ Ja <1, where
lim,_, » nv* = 0, the eigenvalue spectrum is continuous starting from A = 0
and stability needs a more detailed discussion.
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