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A F o k k e r - P l a n c k  equa t i on  can  be derived f r o m  a t r ans i t ion- type  t r an spo r t  
equa t i on  if the  t r ans i t ion  ra tes  a re  near ly  local in m o m e n t u m  space  c o m -  
pared  with the  i n h o m o g e n e i t y  l eng th  o f  the  d is t r ibu t ion .  It  is a s econd -o rde r  
differential  equa t ion ,  whose  coefficients depend  on  the  b a n d  s t ruc tu re  
E(k) ,  the  viscosi ty t en so r  rl(k), and  the  t e m p e r a t u r e  T. Classical  so lu t ions  o f  
the  F o k k e r - P l a n c k  equa t i on  deal wi th  the  parabol ic  b a n d  s t ruc tu re  o f  free 
B rown i an  par t ic les  in a field o f  force. Mobi l i ty  a n d  diffusivity a re  t hen  
i ndependen t  o f  the  appl ied  field. Here  the  explicit  so lu t ion  for  the  s t a t ionary  
s tate  and  the  t ime- in tegra ted  condi t iona l  probabi l i ty  will be given in one  
d imens ion .  Th i s  suffices to de te rmine  mobi l i ty  and  diffusivity. A s s u m i n g  
'7 = 1, these  quant i t i es  become  i n d e p e n d e n t  o f  the  field a n d  the  b a n d  
s t ruc ture ,  if t he  la t ter  is nonper iod ic ,  t h o u g h  the  d i s t r ibu t ion  still d epends  
on  it. Th i s  p rope r ty  even ho lds  in three  d i m e n s i o n s  for  k - i n d e p e n d e n t  
viscosi ty tensors .  F i e ld -dependen t  mobi l i ty  a n d  diffusivity a re  ob t a ined  for  
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a k-dependent viscosity or rt = 1 and periodic band structures. The latter 
is demonstrated for the case E = -cos k, which is also related to the noise 
problem in Josephson junctions. 

KEY WORDS: Nonequilibrium transport; Fokker-Planck equation; 
transport coefficients; noise-temperature conjecture; noisy Josephson 
junction. 

1. I N T R O D U C T I O N  

The Fokker-Planck equation has been studied extensively for classical 
systems in connection with Brownian motion and as a result of a linear 
Langevin equation (see Ref. 1). The fluctuation theory for nonlinear systems 
has been developed on the same basis by MacDonald ~2) and Polder, ~3~ who 
introduced a velocity-dependent viscosity or friction coefficient in the Lange- 
vin equation. Inconsistencies coming out from a Langevin treatment of the 
nonlinear rate equations have been elucidated by van Kampen, ~4~ who claims 
that only a master-equation approach avoids the difficulties in deriving the 
noise spectrum of the nonlinear system. This is plausible since only the master 
equation defines all rate equations uniquely, but the velocity rate equation or 
its deterministic Langevin form with random force does not, in general, 
imply the velocity correlation function or the second velocity moment, quite 
apart from higher correlation functions and moments. 

In the presence of a field of force the Fokker-Planck equation has been 
discussed by Kramers and others (see Ref. 5). The problem is quite similar to 
the transport equation for free electrons in an electric field, but instead of a 
discontinuous transition rate collision operator, a Fokker-Planck differential 
operator has to be used. We know that under certain conditions this can be 
justified (see Ref. 6). The discontinuous transitions can be approximated by a 
continuous stochastic process if the transition rates are sufficiently local 
compared to the inhomogeneity length of the distribution. 

We should like to apply this concept to some typical collision operators. 
Consider the collisions of electrons by a deformation potential and acoustic 
phonons. A perturbation expansion with respect to the sound velocity allows 
reduction of the collision operator into a second-order differential term (con- 
tinuous process) in energy (see Ref. 7), whereas the momentum change is still 
of  transition type. If  the transition rate is small for large momentum change, 
as, for example, in crystals with polar optical scattering (see Ref. 8), then a 
Fokker-Planck approximation in momentum can also be assumed. These 
approximations are justified only if the transition-rate multiplying factor is 
slowly varying in the range where the transition rate has a rather sharp 
maximum (method of steepest descent). 
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In this paper we give some general results for the transport problem as 
given by continuous stochastic processes. In Section 2 the transport equation 
with a Fokker-Planck collision term is derived from the usual transition-rate 
collision term. In Section 3 the steady-state solution and the mobility, and in 
Section 4 the diffusivity, are determined, respectively, for an arbitrary non- 
periodic band structure. The special case of a linear system is treated in 
Section 5. The example for a periodic band structure is given in Section 6, 
while Section 7 contains final remarks. 

2. THE F O K K E R - P L A N C K  E Q U A T I O N  FOR C H A R G E D  
PARTICLES 

The usual approach to transport theory of charged particles (see Ref. 9) 
includes the quantum mechanical properties of the band structure E(k) 
resulting from a periodic lattice, and the transition rates Wkk. for a transition 
of particles in the state k' to state k. Since the pseudomomentum k increases 
in the presence of a field F (dk/dt = F), the change by flow in k, x space will 
be compensated by collisions according to the transport equation 

Cgfkot + F  ~ + Vk ~ = f d3k'(Wkk,A,- Wwkfk) (1) 

where Vk = OEk/~k is the group velocity of  the particles, hk = C e x p ( -  Ek/T) 
is the normalized Maxwell-Boltzmann distribution in equilibrium, and the 
transition rates fulfill the detailed balance Wkk'hk' = Wk'khk, which ensures 
the equilibrium solution fk = hk for F = 0 (h = e = kB = m = 1). As men- 
tioned before, there are collision processes where transitions with small 
momentum changes k - k '  are predominant, i.e., the transition rates con- 
tribute only in a small range [k - k'[ ~< Ak. If  the distribution function is 
nearly constant over this range, the collision operator can be expanded in a 
power series of differential operators which has to be truncated at the 
second order for an equation with solutions of probability character (see Ref. 
10). In order to have a Maxwell-Boltzmann distribution hk in equilibrium, 
the complete equation for continuous collision processes becomes 

~-~ ~-~ + vk ~ = ~---~ rlk vkf + r-~-~ (2) 

where rlk is a momentum-dependent symmetric tensor, which is a friction 
coefficient or relaxation frequency, and gives the relaxation rates to the 
equilibrium distribution for different k values. According to Moyal, (z~ 
2V~e(k ) is the second moment of Wkk', and is even in the momentum, because 
the transition rate is invariant against (k, k') ~ ( - k ,  - k ' ) .  

For parabolic band structure and constant friction coefficient this equa- 
tion has been discussed in the zero-field case and for a constant field. The 
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result is a displaced Maxwellian distribution with displacement u~ = ~ = 
F~/~ and a velocity-vel0city correlation function ~w(t)Av(O)= Te-'t~,e. 
Therefore mobility/z~B and diffusivity D~a, 

tz~B = d~,/dF B (3) 

D ~  = AV,(t)AvB(O ) (4) 

are independent of  the field, in agreement with linear rate equations. 
In the next section mobility and diffusivity will be determined formally 

for the general transport  equation (2) in the case of  nonperiodic band 
structures E(k) in one dimension. 

3. MOBIL ITY A N D  DIFFUSIVITY OF THE GENERAL 
FOKKER-PLANCK EQUATION IN ONE D IMENSION 

The one-dimensional Fokker-Planck equation for a homogeneous 
system (~/gx = O) becomes 

0-7 + F ~  = ~ ~ v~ + r ~  (5) 

and it has a nonegative, normalizable solution, since ~Tz > 0. In the stationary 
state (~/~t = 0) this equation reduces to 

F4  s = ~7[v~ s + T(O~/Ok)] (6) 

where the integration constant vanishes, because ~ has to be normalizable in 
- o o  < k < c~, and therefore ~ --~ 0 for [k[ -+ c~. Direct integration yields 

~s = C e x p [ - ( E k  - FBk)/T], Bk = - -  (7) 
r/k, 

and C follows from f dk ~s = 1. The stationary solution exists, if 0 < 
~ ~< ~ ,  and is unique. It  is stable, 2 since all initial distributions tend to ~ for 
t ~ 0% i.e., deviations from 4~ decay to zero. According to Eq. (3), the mobil- 
ity of  the carriers is 

= du/dF,  u = ~ = f dk v(k)~s(k) (8) 

The explicit solution of the transient problem can only be given for 
simple cases, since a Laplace transform would give rise to an ordinary 
second-order differential equation. But in order to find D it is sufficient to 

= Only in the range where lim~ ~ ~ ~v 2 = o~ does the existence of  the stat ionary solut ion 
also imply its asymptot ic  stability (see appendix).  
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have the time integral of the conditional probability. Subtracting the station- 
ary solution from (5) and integrating finally gives 

r  3 ( k - k o )  + F ~ -  = ~--~ V vA + T ~ -  (9) 

where 

~0 ~176 A(k, ko) = dt [r - Cs(k)] (10) 

By straightforward integration of (9), one gets 

A(k, ko) = {exp[- (E(k) - FB(k))/T]}{B(ko) 

x exp[(E(k') - FB(k'))/T]} (l l)  

where B(ko) follows from the condition f dk A(k, ko )=  0, which can be 
verified by Eq. (10). Therefore A(k, ko) is explicitly known for all band 
structures and friction coefficients. 

According to Eq. (4), the diffusivity can be expressed by 

D = f f ko)r (12) 

and therefore the solution of (9) is sufficient in order to determine D. 
The mobility tz(F) and the diffusivity D(F) are therefore explicitly 

determined from the solutions of a Fokker-Planck equation in one dimension. 

4. MOBIL ITY  A N D  D IFFUSIV ITY  FOR THE CASE OF 
C O N S T A N T  FRICTION IN THREE D I M E N S I O N S  

Solution of the general Fokker-Planck equation in three dimensions is 
usually not possible in closed form. Even in the special case of constant 
friction coefficient the explicit solution cannot be found for arbitrary band 
structures. But it will now be proved that in this special case, mobility and 
diffusivity can very easily be derived from the lowest rate equations (moment 
equations) of the three-dimensional version of Eqs. (5) and (9). 

The equation for the conservation of momentum is 

(~r~/ot) - 1~ = - q . v  (13) 

which in the stationary state provides drift velocity and mobility 

u = ~ = q - l . F ,  ~ = q - 1  ( 1 4 )  
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a result which is well known for free electrons or parabolic bands. 
The equivalent momentum equation from Eq. (9) is 

- ko = - r l -  f d 3 k  E~ YA (15) 

since the field term vanishes by f d3kA = 0. The diffusivity is then, by Eqs. 
(12) and (15), 

O = f d3k [q-~.(k - k~)]vr 

= f d3k q - l . k ( v  - ~)q~S(k) (16) 

which by use of Eqs. (6) and (14) becomes 

o = fd3k q - l . k ( - T O r  = q - i T  (17) 

This again is the well-known result for free electrons (see Ref. 5). 
It is remarkable that mobility and diffusivity do not depend on the 

electric field nor on the band structure. This is a degeneracy in the sense that, 
though the distribution depends on F and E(k), the lowest moment and 
correlation function coincide, respectively. 

In all our considerations it was tacitly assumed that the band structure 
extends over the whole k space with limlkL~ E = ~ ,  i.e., that E(k) is non- 
periodic. Therefore the integration constant in Eq. (6) is zero if ]k I -+ ~ is 
inserted. 

It will finally be shown that for periodic band structures the degeneracy 
mentioned is removed. 

5. PERIODIC BAND STRUCTURE A N D  CONSTANT FRICTION 

Explicit solutions of the Fokker-Planck equation and constant relaxa- 
tion frequency (~ = 1 is no restriction) can also be derived for periodic band 
structures in one dimension, i.e., Ek§ = Ek, where p is the period in the 
reciprocal lattice. Compared to Eq. (7), the stationary solution is 

f; r = A~% (dk'/~k,), q~ = exp[ - (E~ - Fk)/r] (18) 

since the integration constant, which vanishes in Eq. (6), is A # 0 here. The 
periodicity of es is guaranteed if a = ~ .  Summation over all periods gives 

r __ A f~+Pdk' 
1 e - p r l T  cl)k - -  

- Jk ~ '  (19)  
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which can be decomposed  into  

[ f ,  r k d k ' l  1 ~' dk '  e-  pelt [ [ (20) 

where N follows f rom normal iza t ion  f(p) dk  r = 1. 

In the l imit  o f  T = 0 the first te rm is d o m i n a n t  and  has a sharp  m a x i m u m  
for F < v ~ x  at  k = k0(F),  the smal les t  r oo t  o f  v(k)  = F, i f  Ek has its abso-  
lute m in imum in k = 0; for  F > Vm~x the d is t r ibu t ion  can be found  f rom the 
F o k k e r - P l a n c k  equa t ion  for  T = 0, 3 

f 3[k --  ko(F)],  IFI  < v ~ =  

T = 0 :  r  C , (21) 

L T - -~--7-t-) IF i  > vm~x 

In the l imit  T--> ~ (c& ---> 1) the par t ic les  are equal ly  d i s t r ibu ted  and  

T = oo: r = l ip  (22) 

The  dr if t  veloci ty ob ta ined  by  simple in tegra t ion  of  the F o k k e r - P l a n c k  
equat ion  gives 

u(F, T )  = F -  Tp(1 - e -pF/r) 

x dk  q~k - -  dk  ~ ~ ' J  Jk qgk" + e-PFIT ,.'0 (23) 

and  

, IFf < ~m~x 

T = 0: u(F, O) = _ pF , [FI > vm~x (24) 
1 

f dk  1 - (vk/F) 

T =  oo: u(F, oo) = 0 (25) 

F-+ oo: u(F, T) = (l/Fp) f dk v~ + O(1 /F  a) (26) 

This  de termines  the g lobal  behavior  of  the drif t  curves;  details  are given for  

E = - c o s  k in Fig. 1 for  all tempera tures .  Al l  curves have cri t ical  fields 
where the differential  conduct iv i ty  vanishes.  

3 The Fokker-Planck equation for IF[ < Vm~x gives r = ~n C,~[k - k,(F)], where n 
numbers the different solutions of v~ = F. What weights Cn have to be attributed to the 
solutions is not a priori evident. For F = 0 only the absolute energy minimum should 
contribute. 
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Fig. l. Drift velocity u for the periodic band structure E = - cos k as a function of the 
applied field F with temperature T as a parameter. 

There  is a one- to -one  cor respondence  between the dr i f t  in a per iodic  
band  o f  type  E = - c o s  k and  the noise p rob l e m of  a Josephson  osci l la tor  
wi th  zero capaci tance  (see Ref. 11). The average vol tage v equals 

v(x, 7) = u(F, T)  - F (27) 

where  x is the inpu t  current ,  to be identif ied here with F,  and  1/7 is the noise 
pa ramete r ,  to be identif ied here with 7'/2. The average vol tage input -cur ren t  
character is t ic  o f  a noisy Josephson  junc t ion  is therefore  essential ly the 
average current  input -vol tage  character is t ic  o f  a F o k k e r - P l a n c k  t r anspor t  
p rob lem.  A n  interference t e rm in the Josephson  noise p rob lem cor responds  
to a k -dependen t  field and  frict ion.  4 

The  diffusion cons tan t  can be found  in ana logy  to Section 3 for  the 
nonper iod ic  case. In teg ra t ion  of  (9) with -q = 1 yields 

T - ~  + vA = - T B ( k o )  + dk' [r - 3,(k - k0)] (28) 
p12 

4 The field term Fx gf/ak in the transport equation has then to be written as (g/bk) x 
(F~xf) in order to have local particle conservation. 



Solutions of the Fokker-Planck Transport Equation 139 

where 3p(k) = ~ = _  ~o 3(k - np), and B(ko) is determined by the normaliza- 
tion f(p, dkA  = 0. Since Cs(k) and 3p(k - ko) are periodic in k, then A(k, ko) 

also becomes a periodic function in k and k0: 

B(ko) (~+ p dk'  q~ 
A(k, ko) = 1 - e -pElT cp~ • T(I - -  e -pElT) 

k ~Pk' 

Jk ~-~'J-p/2 [r - 3p(k" - ko)] (29) 

1 ( fk+p dk' t "k" 
B(ko) = ~ j(  ak q~ Jk | ~ J_|p,e dk" [r - 3p(k" - ko)] (30) 

p) 

Integrating (28) over the period p gives 

dk vA = k@ - Z ~ - pTB(ko)  (31) 
p) 

and the diffusivity D follows by means of  (12). 
This result has been applied again to E - -  - c o s  k. The diffusion has 

been calculated numerically and Fig. 2 represents D and the noise temperature 
| = DIll, which, according to Einstein's relation, has to coincide with T for 
F = 0. For F--> o@ the diffusion constant decreases as 

F--> ~ :  D ,,~ T /2F 2 (32) 

which, because of u ~ 1/2F [see Eq. (26)], gives formally @ = - T. It has to 
be mentioned that cases with negative mobility (i.e., O < 0) are physically 
unstable with respect to small density fluctuations; therefore the negative @ 
branch has been omitted in Fig. 2. 

6. F INAL R E M A R K S  

The Fokker-Planck equation has been introduced as a limit case of  a 
transition-rate transport equation. This can be done if the transition rates are 
rather local compared to the inhomogeneity length of the distribution. This 
general Fokker-Planck equation has been studied in the special case of free 
particles or parabolic band structure in many classical papers. 

Here we were especially interested in solutions for nonparabolic bands. 
Explicit solutions can be found in one dimension for the stationary distribu- 
tion and for A(k, k0) a time-integrated form of the conditional probability, 
which suffices for determining the diffusion constant. 

In three dimensions the problem is analogous to the solution of  the 
drifted diffusion equation, where drift and diffusion constant are space 
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Fig. 2. Diffusion constant D and noise temperature | = D/(du/dF) as a function of the 
field F for temperature T = 1 (kB = 1). At the critical field Fc(T = 1) = 1.185 the 
mobility vanishes. 

dependent .  Mobi l i ty  and  diffusivity cannot ,  in general ,  be found  except in the  
case o f  a cons tan t  viscosity tensor  rlk = const .  

The result  for mobi l i ty  and  diffusivity then coincides wi th  the same resul t  
o f  the wel l -known case of  pa rabo l i c  bands  Ek = k2/2, whereas the dis t r ibu-  
t ion and  the cond i t iona l  p robab i l i ty  are quite different. This indicates  a 
degeneracy,  in the sense tha t  averages (eigenvalues) are independent  o f  cer tain 
proper t ies  (symmetr ies  or  parameters )  t hough  the d is t r ibut ions  (wave func- 
t ions)  depend  on it. Here  mobi l i ty  and  diffusivity and  therefore  also the noise 
t empera tu re  | are independen t  of  the field and  the band  structure,  if  the la t ter  
is nonper iodic .  ~ 

This degeneracy also has some connect ion  to the noise conjecture  (see 
Ref. 12), which claims tha t  the noise t empera tu re  t9 is a m in imum in equi- 

5 This does not hold for frequencies ~o ~ 0, except in the classical case of parabolic 
bands, where | F, T) ~- 7'. 
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librium F = 0, where it coincides with T, the lattice temperature, whereas for 
F > 0 it should always be larger. For a parabolic band in the constant-r  
approximation the result is @ll = T + F2~ -2 and |177 = T, the latter degenerate 
with respect to the field. 

A counterexample to the unqualified conjecture @lr, O• /> T was found 
by varying the band structure E = Ik] ~, since O• = T + (positive constant) 
x (e - 2)F 2 + ... provides | < T for small fields and e < 2. This example 

led to a more precise formulation of the conjecture in three dimensions, the 
qualified conjecture, which so far has not been falsified. 

Now the field degeneracy of the Fokker-Planck noise temperature 
| = T for parabolic bands could, hopefully, lead also to a genuine counter- 
example for the one-dimensional | /> T conjecture if the energy is varied. 
Assuming E~ -- �89 2 + A% (~ is a small expansion parameter), the noise tem- 
perature would be an expansion 0 = T + ,~@I(F, T) + A2@2(F, 7") + .... 
where the coefficients are functionals of  e k. A counterexample would be 
relatively easily constructible if | ~ 0. But explicit perturbation theory not 
only gives @~ = 0 but also 02 = 03 . . . . .  0, for which a much simpler 
proof  was found later, which has been presented in Section 4. 

A P P E N D I X  

According to Eq. (7) the stationary solution Cs exists for all fields if (1) 
~k > 0 in -oo  < k < oo (eventually l i m k ~  ~ = 0), and if (2) limk~| Ek/ 
B~ = oo. I f  limk ~ | EJBk = FR is finite, the stationary solution exists only for 
[FI < FR, a runaway field. 

The solution of the time-dependent equation (5) can be reduced by 
r oc e-At to the eigenvalue problem 

T~--~ ~7 ~-~ + ~-k (r/v - F)r  + Ar = 0 (A.1) 

which by substituting r = r is equivalent to the (self-adjoint) S turm- 
Liouville equation 

(T~r162 + aCsr = 0 (A.2) 

All eigenvalues ,~ must be nonnegative, since f dk r gives immediately 

a =  rfdkvr162162162 (A.3) 

where the value ,~ = 0 belongs to the stationary solution r = Cs or r = 1. If 
the lowest eigenvalue were well separated from the next, only the A = 0 term 
would survive for t --> oe if the solution r t) were expanded with respect to 
eigenfunctions. 
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A Schr6dinger representat ion of the eigenvalue problems gives more 

insight into the na ture  of the eigenvalue spectrum. The substi tut ions 

= ~7-~l~(k)[~(k)ll129(x), x (k)  = dk' (A.4) 
o ~12(k') 

t ransform (A.1) into 

T d2~o/dx 2 + (h -- V(x))~o = 0 (A.5) 

with the potent ia l  

T[d2~  (d~/dk)2] ( ~ v -  F ) 2 1 d  
V(x)  = -~ [ - -~  + 4T~7 2 dk 07v) (A.6) 

I f  the x range is infinite and  V(x)  --> + oo for Ix[ --> oo or if the range is finite 

- x l  < x < xl ,  the eigenvalues {h~} are all discrete and  therefore A o = 0 

(simple, since the s tat ionary solut ion is unique)  and  h~ i> hx > 0 are well 

separated. 
Assuming  asymptot ic  forms E ~ ]k[ E with E > 0 and  ~ ~ Ik] ~, the x 

range becomes finite if a > 2, �9 > 0. For  infinite x range, c~ ~< 2, and  Vv 2 
k ~+2"-2 is the d o m i n a n t  term for x - +  c~ in the potential .  The stat ionary 

solut ion exists if E~/Bk ~ k'+"-~--->oo, i.e., for �9 > 0 and  e + a > 1, 

whereas asymptot ic  stabili ty follows for e > 0 a nd  �9 + �89 > 1, i.e., if  

l im~| 2 = o o .  In  the range e > 0 ,  � 9  > 1, � 9 1 8 9  < 1, where 
limk~ ~o ,Tv 2 = 0, the eigenvalue spectrum is cont inuous  starting from h = 0 

and  stability needs a more detailed discussion. 
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